音頻處理器在音響工程中已經應用非常廣泛了,音頻處理器就是廣播傳輸系統環節中的關鍵設備之一,它對播音質量的影響非常大。對于有基礎的人來說,處理器是一個很好用的工具,但對于一些經驗比較欠缺的朋友來說,看著一臺處理器,又是一大堆英文,不免有點無從下手。今天和大家一起聊一下數字音頻處理器的合理使用。
保持信號不失真傳輸
在中波廣播發射機前端,被音頻處理器高度處理過的音頻信號中,會含有不少類似方波的平頂波形。方波的波形對它所經過的傳輸通路的幅度和相位響應要求是比較高的。原理上講在節目主能量的頻率范圍中,若平坦的幅度和群時延發生偏差,就會使處理過的音頻信號平坦頂部產生傾斜,從而增加了峰值調制電壓,但平均電平并沒有增加。從峰/平比值看,該通路的平均電平減小了,因而響度就會被相應減弱。對此,我們要保持處理后信號波形的原形。首先采用的方法是,在傳輸信號電纜的使用上,盡量選擇質量上乘,性能優良的傳輸電纜,要求其分布參數小、頻帶寬、采用線徑粗、衰耗小,屏蔽好的銅芯傳輸線。這點非常重要,也很有效果。另外,在傳輸連接中,盡量不添加任何附加設備及分支部件,如中間放大器、分配器等,以減小信號波形畸變,保證良好的傳輸質量。
音頻處理系統設置
1、對音頻處理器來說,它由兩個電路組成,一是慢動的AGC,二是動作與恢復時間適中的壓縮器,對每個頻段根據需要設置調節最佳的時間常數。我們在實際使用中得出結論,適當地將低聲頻段時間常數設置的比高聲頻段慢一些(約200μs左右),此法在增加節目信號密度上起的作用較大
2、音頻處理器在基本系統中還增加了一些輔助的組件,啟用了音頻處理器裝在慢動AGC與多頻段壓縮器之間的頻率均衡處理組件,來補償中波廣播信號典型存在的音頻頻響不佳的狀況。適當地提升600Hz-1.2KHz聲音能量在整個音頻頻譜中的分布,讓這段聲音在聽覺上變得“較大”(人耳聽覺最靈敏范圍在2KHz-8KHz)?墒孤牨姼械铰曇糇兊谜鎸崉勇牎
3、我們還使用了音頻處理器上稱為的“抵削失真”裝置,用它來提供絕對的負峰值控制,防止了音頻信號溢波,以消除聽眾最可能聽得見的一些頻段中的失真。
音頻處理器擺放位置
在系統中對音頻處理器所放置的位置,也是有講究的,為了有效的保護被音頻處理器處理過的峰值限制的波形,使其在傳送到發射機的過程中不發生改變,應將音頻處理器靠近發射機放置,并且是距離越短越好。以免在傳輸過程中因分布參數變化,引起寄生調制峰值,使已處理過峰值限制的波形發生改變,造成音頻信號的波形失真。
音頻處理器的好處
、倏梢越鉀Q由于錄制、交換、不同節目內容及使用不同的錄放設備而引起的節目電平差異較大的問題,而這在人工手動調整節目電平時難以很好解決。
、跒榻⒄Z言節目和音樂節目之間的音量平衡創造了條件。
、劭梢詫澞康统睍r的弱信號進行一定量的放大,使之不被雜音成分淹沒。通常節目中的高音成分的電平值較低,經處理后可得到適量提升,高音頻成分不僅決定著節目的清晰度,而且與響度之間有著心里和生理上的復雜關系,由于清晰度的提高,使聽眾感到響度也增加了。
④立體聲廣播,其覆蓋半徑約為同功率等級發射狀態的單聲道廣播的一半,采用音頻處理器后,因邊帶波功率的增大,使接收載波場略低于要求的地方也有可能收到質量較高的信號,擴大了覆蓋范圍。
|